当前位置:首页 > 科技 > 正文

指数函数求导公式推导过程 16个基本导数公式

指数函数求导公式推导过程 16个基本导数公式

指数函数导数的推导方法1、指数函数的求导公式:(a^x =(lna (a^x 2、部分导数公式:(1)y=c(c为常数 y=0(2)y=x^ny=nx^(n-1 (3)...

指数函数导数的推导方法

1、指数函数的求导公式:(a^x)=(lna)(a^x)

2、部分导数公式:

(1)y=c(c为常数)y=0

(2)y=x^ny=nx^(n-1)

(3)y=a^x;y=a^xlna;y=e^xy=e^x

(4)y=logaxy=logae/x;y=lnxy=1/x

(5)y=sinxy=cosx

(6)y=cosxy=-sinx

(7)y=tanxy=1/cos^2x

(8)y=cotxy=-1/sin^2x

(9)y=arcsinxy=1/√1-x^2

(10)y=arccosxy=-1/√1-x^2

(11)y=arctanxy=1/1+x^2

(12)y=arccotxy=-1/1+x^2

3、求导证明:

y=a^x

两边同时取对数,得:lny=xlna

两边同时对x求导数,得:y/y=lna

所以y=ylna=a^xlna,得证。

4、注意事项

不是所有的函数都可以求导;

可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

导数的求导法则如下:

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

指数函数的导数公式推导过程是什么

a^xlna

推导过程

y=a^x

两边同时取对数:

lny=xlna

两边同时对x求导数:

==>y'/y=lna

==>y'=ylna=a^xlna

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

指数函数微分推导

指数函数求导公式:(a^x)'=(a^x)(lna)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

指数函数的导数公式

y=a^x

两边同时取对数:

lny=xlna

两边同时对x求导数:

==>y'/y=lna

==>y'=ylna=a^xlna

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

指数函数求导的方法

1.y=c(c为常数)y'=0

2.y=x^ny'=nx^(n-1)

3.y=a^xy'=a^xlna

y=e^xy'=e^x

4.y=logax(a为底数,x为真数)y'=1/x*lna

y=lnxy'=1/x

5.y=sinxy'=cosx

6.y=cosxy'=-sinx

7.y=tanxy'=1/cos^2x

8.y=cotxy'=-1/sin^2x

9.y=arcsinxy'=1/√1-x^2

10.y=arccosxy'=-1/√1-x^2

11.y=arctanxy'=1/1+x^2

12.y=arccotxy'=-1/1+x^2

13.y=u^v==>y'=v'*u^v*lnu+u'*u^(v-1)*v

在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,△y=c-c=0,lim△x→0△y/△x=0.

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到y=e^xy'=e^x和y=lnxy'=1/x这两个结果后能用复合函数的求导给予证明.

3.y=a^x,

△y=a^(x+△x)-a^x=a^x(a^△x-1)

△y/△x=a^x(a^△x-1)/△x

如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算.由设的辅助函数可以知道:△x=loga(1+β).

所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β

显然,当△x→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna.

把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna.

可以知道,当a=e时有y=e^xy'=e^x.

4.y=logax

△y=loga(x+△x)-logax=loga(x+△x)/x=loga[(1+△x/x)^x]/x

△y/△x=loga[(1+△x/x)^(x/△x)]/x

因为当△x→0时,△x/x趋向于0而x/△x趋向于∞,所以lim△x→0loga(1+△x/x)^(x/△x)=logae,所以有

lim△x→0△y/△x=logae/x.

可以知道,当a=e时有y=lnxy'=1/x.

这时可以进行y=x^ny'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以y'=e^nlnx(nlnx)'=x^nn/x=nx^(n-1).

5.y=sinx

△y=sin(x+△x)-sinx=2cos(x+△x/2)sin(△x/2)

△y/△x=2cos(x+△x/2)sin(△x/2)/△x=cos(x+△x/2)sin(△x/2)/(△x/2)

所以lim△x→0△y/△x=lim△x→0cos(x+△x/2)lim△x→0sin(△x/2)/(△x/2)=cosx

6.类似地,可以导出y=cosxy'=-sinx.

7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

9.y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

12.y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

13.联立:

①(ln(u^v))'=(v*lnu)'

②(ln(u^v))'=ln'(u^v)*(u^v)'=(u^v)'/(u^v)

另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv

自然对数的指数函数求导过程

自然对数的指数函数可以写为y=e^x,其中e是自然对数的底数。

要求这个函数的导数,可以使用链式法则。

首先,我们将y=e^x写为y=f(g(x))的形式,其中f(u)=e^u,g(x)=x。

根据链式法则,导数可以表示为:

dy/dx=f'(g(x))*g'(x)

我们需要计算f'(u)和g'(x)。

f'(u)表示e^u的导数。根据指数函数的求导法则,这个导数等于自身,即f'(u)=e^u。

g'(x)表示x的导数。根据常数函数的求导法则,这个导数等于1,即g'(x)=1。

将这两个导数代入链式法则的公式,可以得到:

dy/dx=e^x*1

即,自然对数的指数函数的导数为dy/dx=e^x。

所以,自然对数的指数函数的导数是e^x。

自然指数函数的导数推导

设:指数函数为:y=a^x

y'=lim【△x→0】[a^(x+△x)-a^x]/△x

y'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△x

y'=lim【△x→0】(a^x){[(a^(△x)]-1}/△x

y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)

设:[(a^(△x)]-1=M

则:△x=log【a】(M+1)

因此,有:‘

{[(a^(△x)]-1}/△x

=M/log【a】(M+1)

=1/log【a】[(M+1)^(1/M)]

当△x→0时,有M→0

故:

lim【△x→0】{[(a^(△x)]-1}/△x

=lim【M→0】1/log【a】[(M+1)^(1/M)]

=1/log【a】e

=lna

代入(1),有:

y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x

y'=(a^x)lna

最新文章